x^2/20+13=40

Simple and best practice solution for x^2/20+13=40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2/20+13=40 equation:



x^2/20+13=40
We move all terms to the left:
x^2/20+13-(40)=0
We add all the numbers together, and all the variables
x^2/20-27=0
We multiply all the terms by the denominator
x^2-27*20=0
We add all the numbers together, and all the variables
x^2-540=0
a = 1; b = 0; c = -540;
Δ = b2-4ac
Δ = 02-4·1·(-540)
Δ = 2160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2160}=\sqrt{144*15}=\sqrt{144}*\sqrt{15}=12\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{15}}{2*1}=\frac{0-12\sqrt{15}}{2} =-\frac{12\sqrt{15}}{2} =-6\sqrt{15} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{15}}{2*1}=\frac{0+12\sqrt{15}}{2} =\frac{12\sqrt{15}}{2} =6\sqrt{15} $

See similar equations:

| 2x-1+x-3=7 | | 9-7x=4x+41 | | 7.2f+3.4=9.6f+1.6 | | P-2q+10=0 | | Y-7-0.3y=9.8 | | 7(4x+5)=-49 | | -1/5=1/2v+1/3 | | x+1+2x+3=4 | | 3(m+9)=14 | | -4p-5=19 | | 12/30w=25/30 | | (x)=13x=52 | | a/6=3=10 | | 6x*35+115=-60+11x*35 | | 4+16x=-2+17x | | 2x+3+x+1=4 | | 6x(35)+115=-60+11x(35) | | X2-2x-3=1 | | 6x^2-2=-52 | | 8x1-2=2(4x-2) | | 10x-24=12 | | 2x+8+x-1=7 | | 6x+8/2=5x-20 | | 1/3-2/5w=5/6 | | 4x+7=1=2(2x+3) | | 9z-z=2+3z-3-10 | | -5x-20=5 | | -1/2=6/5w-2/3 | | (x^2)/(0.01-0.2*x+x^2)=54.3 | | 3(2x–1)=4(x+2) | | 15b+15=0 | | 2+2(2x-3)=-2(3x-7)+6x |

Equations solver categories